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Abstract. We present a model for non degenerate optical parametric oscillators (OPO) including diffraction
and walk-off effects, and report how the transverse beam profile is changed by the walk-off. A complex
order-parameter description for the OPO near threshold leads to a two dimensional evolution equation
with symmetry breaking stemming from the presence of walk-off. We find that the onset of instability
is hastened and that the emerging transverse beam profile propagates in the walk-off direction. This
prediction agrees qualitatively with recent experimental results. The convective nature of the instability
at the first bifurcation predicts that only the noise-sustained structures may play an important role. The
absolute instability observed at larger values of the pump parameter, gives rise to dynamically self-sustained
patterns. Numerical simulations are reported to illustrate a possible sequence of convective and absolute
instabilities together with the subsequent nonlinear transverse spatio-temporal dynamics.

PACS. 42.65.Yj Optical parametric oscillators and amplifiers – 42.65.Sf Optical spatio-temporal dynamics
– 47.20.-k Hydrodynamic stability

1 Introduction

Together with stimulated emission, parametric amplifica-
tion is a fundamental mechanism for generation of coher-
ent radiation. The former is the basis of laser action and
the latter that of optical parametric oscillation. On the
one hand, laser theory has been the subject of intense ac-
tivity and there are now very sophisticated theories for
a wide variety of lasers. Lasers are now well understood
and widely used in many different fields but on the other
hand optical parametric oscillators are less known. In fact,
although the basic process of optical parametric amplifi-
cation has been discovered more than 30 years ago, Opti-
cal Parametric Oscillators (OPO) developed quickly only
in the last ten years mostly for technological reasons [1].
Compared to lasers, OPOs have received much less atten-
tion in spite of their strong interest both on the funda-
mental and on the technological sides [2].

Let us recall that these are very frequency agile co-
herent sources with a wide range of possible applications
including range finding, pollution monitoring and tunable
frequency generation... They are also the key element for
the production of twin photons and the realization of fun-
damental quantum optics experiments [3].

a e-mail: majid.taki@univ-lille1.fr
b Laboratoire associé au CNRS.

Basically an optical parametric amplifier generates
light via a three-wave mixing process in which a nonlin-
ear crystal subjected to a strong radiation at frequency ωp
(pump beam) radiates two coherent fields at frequencies
ωs(signal beam) and ωi (idler beam) such that the energy
conservation law

ωp = ωs + ωi

is satisfied. This energy conservation criterion may be in-
terpreted in terms of photons where one photon at fre-
quency ωp is converted into two photons at frequencies
ωs and ωi. This process is most efficient when the phase
matching condition is fulfilled. It states that optical para-
metric amplification is favored when the three interacting
waves keep constant relative phases along their propaga-
tion inside the crystal. This implies

kp = ks + ki,

or equivalently

np(ωp)ωp = ns (ωs)ωs + ni (ωi)ωi

where kj and nj are the wavevector and the refractive
index at frequency ωj respectively (j = p, s, i).

It is classical to compensate for the unavoidable ma-
terial chromatic dispersion, i.e. its refractive index vari-
ation with frequency, by taking advantage of the crystal
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birefringence. In birefringent crystals, the refractive index
depends on the polarization state and using different po-
larizations for the beams it is possible to match their phase
velocities. Several configurations are encountered depend-
ing on which wave propagates along an ordinary or an ex-
traordinary axis of the crystal. Typical configurations are
the type I and type II phase-matching. In type I the signal
and idler beams are ordinary (extraordinary) waves while
in type II one is ordinary and the other one is extraordi-
nary and the pump is extraordinary (ordinary) in negative
(positive) crystals for both. As the extraordinary index de-
pends on the propagation direction, the phase matching
condition is angle dependent. For instance for type I phase
matching in a positive crystal, it writes

nop(ωp)ωp = nes(ωs, θ)ωs + nei (ωi, θ)ωi

where superscripts e and o refer to extraordinary and or-
dinary waves respectively. For any angle θ ∈

]
0, π2

[
the

Poynting vector and the wavevectors k are not parallel.
As a result even ordinary and extraordinary rays with
parallel wavevectors have different Poynting vector direc-
tions and therefore the rays diverge from one another as
they propagate through the birefringent medium. This is
the so called walk-off effect which limits the overlap of the
waves and imposes severe restrictions on the efficiency of
optical parametric amplification.

As for a laser, the active medium of the OPO is placed
inside an optical cavity which ensures optical feedback and
enhances the interaction. Most theories of OPOs are de-
veloped in the mean field limit in which the electric field
distribution is uniform inside the laser cavity. Recently
Longhi [4] extended the mean field laser theory of Lega
et al. [5] to OPOs. In this approach, diffraction of the
beams is included, introducing some transverse depen-
dence of the variables. This results in a problem much
more complicated than standard laser models because
the transverse dependence of the variables changes the
Haken-Lorenz equations of the laser into a partial differ-
ential equation system which requires more sophisticated
treatments both analytically and numerically. However, in
mean field theories the longitudinal dependence of the
variables is neglected, this is valid for single mode opera-
tion, no pump depletion and a short cavity almost filled by
the crystal. There has recently been significant improve-
ments of the OPO theory including simultaneously trans-
verse effects and propagation along the cavity axis [6]. The
work developed here considers the walk-off effect but does
not include longitudinal effects and therefore is not rele-
vant for high gain situations in which the energy transfer
from the pump beam to the signal and idler is efficient in
a single-pass.

From an intuitive point of view, it is clear that walk-
off effects should alter the properties of pattern forma-
tion in the OPOs. Because the different interacting rays
do not propagate exactly in the same direction, symme-
try is broken by the walk-off effect and new patterns are
expected. Recent experiments [7] exhibited clearly the
transverse dependence [8] of the optical beams in opti-
cal parametric amplification. They demonstrated that the

beams expand transversely in the walk-off direction [9].
It is crucial to elucidate the mechanisms underlying these
phenomena and in particular to separate noise-induced
patterns from those originating from the intrinsic dynam-
ics of the system. This optical situation is analogous to
that encountered in Rayleigh-Bénard convection in pres-
ence of a transverse flow as it was experimentally studied
by Ouazzani et al. [10]. Müller et al. [11] discussed the
structure and the nature of the solutions of this problem.
They showed that a small lateral through flow stabilizes
the conductive state and described the effect of this flow
upon the competition between transverse and longitudinal
rolls. This has recently been extended to Rayleigh-Bénard
convection in a porous medium with qualitatively similar
results [12]. Just like for these perturbed instabilities, the
most interesting cases in OPOs occur when the symmetry-
breaking term is weak enough to allow pattern formation
but not too weak to be negligible. This is exactly the case
of the walk-off effect since for almost all experimental sit-
uations the walk-off angle is % ' 3◦ for phase-matching
angle θ ' 45◦. The difference between convective and ab-
solute instabilities which proved its efficiency in the the-
ory of hydrodynamic instabilities [13] is extensively used
in the present work. In particular we show that the two
kinds of instabilities have different impacts on the OPO
efficiency.

In spite of its common points with the Rayleigh-
Bénard problem and the laser, the OPOs have some speci-
ficities with respect to both problems. The differences with
Rayleigh-Bénard convection are obvious and do not need
further comment. The main differences with the laser lie in
the nature of the light-matter interaction. As far as mod-
elization is concerned, the OPOs have the great advantage
of a very simple and exact description of the interaction
by a quadratic term involving only electric fields and no
matter variables. Moreover the OPOs offer a large variety
of configurations due to the three radiations involved in
the parametric process. The optical cavities that must be
used for efficient coupling of these fields may be simply,
doubly and triply resonant, i.e. may resonate with one,
two of the three or the three fields, contrarily to lasers in
which only one resonant electric field builds up. There-
fore the OPO has a much wider parameter space than the
laser.

The paper is organized in the following way. In the next
section we present the basis of the model and the govern-
ing equations for the OPOs in presence of walk-off and
diffraction effects. In Section 3 an evolution equation is
derived which we expect to be relevant for the real OPO
system in the weakly nonlinear regime close to thresh-
old. A spatio-temporal stability analysis has been carried
out in Section 4 to determine whether a pattern becomes
convectively or absolutely unstable and to evaluate the
corresponding threshold instabilities. We end up in Sec-
tion 5 by pointing out that some of our analytical and
numerical results are in qualitative agreement with corre-
sponding experimental works.
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Fig. 1. Crystallographic coordinate system (X,Y ,Z) and labo-
ratory coordinate system (x,y,z). θ indicates the phase match-
ing angle between the crystal optical Z axis and the longitu-
dinal direction of wave propagation k. (o) and (e) stand for
ordinary and extraordinary, respectively. The walk-off angle
ρ corresponding to a tilt of the Poynting vector direction S
with respect to the direction of wave propagation k, and the
extraordinary electric field E (e) are also shown.

2 Theoretical model

In this section, we construct a model for optical parametric
oscillators including diffraction and walk-off effects. First
we recall the modified paraxial wave equations that de-
scribe propagation in an uniaxial crystal. Due to the walk-
off effect, the Poynting vector for waves with extraordinary
polarization propagates with a small angle ρ relative to
its wavevector k contrarily to ordinary waves for which
the Poynting vector and the wavevector are parallel. The
model is then extended to take into account the optical
cavities which we are interested in, within the mean field
limit.

2.1 Maxwell wave equation in presence of walk-off

For wave propagation in an anisotropic crystal, it is nec-
essary to express the equations in two different coordinate
systems, namely crystallographic coordinates (X,Y, Z)
and laboratory coordinates (x, y, z). The wave propagates
along the direction z which is tilted by an angle θ from the
optical axis Z of the crystal (see Fig. 1). The unit vector
components in the first system are denoted by (e1, e2, e3)
while those of the second one are denoted by (e,o, z). In
the last notation which is more convenient as it will be
seen in the following, z is the unit vector along propaga-
tion direction k, and e and o are the unit vectors along
extraordinary and ordinary polarization directions for the
waves considered in this problem. Anticipating on the clas-
sical properties of light propagation in uniaxial crystals we
choose to have y coincident with the X axis.

The laboratory coordinate axes are simply obtained by

a rotation through an angle
π

2
− θ about x axis. The two

coordinate systems are related by

x = −Y cos θ + Z sin θ

y = X

z = Y sin θ + Z cos θ. (1)

Our starting point is the Maxwell wave equation for non-
conducting and nonmagnetic media

4E−∇ (∇.E)− µ0
∂2D

∂t2
= 0, (2)

where E is the electromagnetic field, D = ε0εr ·E + PNL

is the electric displacement vector written as a sum of the
linear and nonlinear terms and εr represents the usual rel-
ative permittivity tensor. For an uniaxial crystal εr takes
a diagonal form in the crystallographic coordinates whose
eigenvalues are ε1 = ε2 = n2

0 and ε3 = n2
e where n0 and ne

are the ordinary and the extraordinary refractive indices
respectively.

By setting

E = ξ(t, z, x, y) exp [−i(ωt− k0nz)] (3)

in the expression of D and substituting it into equation (2)
we obtain, after straightforward calculations, the following
equation:

4E−(1−γ2)∇

(
∂E3

∂Z

)
−

1

c2
∂2(εr ·E)

∂t2
−µ0

∂2PNL

∂t2
= 0,

(4)

where γ2 = n2
e/n

2
0 and c = ω/k0. Notice that the second

term in equation (4) is specific of the crystal anisotropy. It
states that, contrary to isotropic media, the electric field
is generally not transverse to the direction of wave propa-
gation (see Fig. 1). The nonvanishing E3 component gives
rise to a walk-off angle for the power propagation with re-
spect to wave propagation. The importance of the power
walk-off is directly proportional to the crystal birefrin-
gence ∆n = ne− n0 as can be seen from the coefficient of
the second term in equation (4).

2.2 Basic equations for OPOs: Free and optical cavity
propagation

So far we have not specified the nonlinear terms for the
propagating beams in the crystal. In fact the parametric
process requires the resonance relation ωp = ωs + ωi and
the process is optimized under the phase-matching rela-
tion kp = ks + ki, where the subscripts p, s and i refer to
the pump, signal and idler respectively. In all what follows
we consider a positive crystal (ne > n0), and a general
situation where two of the beams are extraordinary waves
experiencing the walk-off effect. Therefore when the idler
is ordinary we recover the experimental situation consid-
ered by Smith et al. [8] while for an ordinary signal we
meet conditions for the experimental study of Nishikawa
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and Uesugi [9]. We assume here the following phase-
matching: kp,(o) = ks,(e)(θ) + ki,(e)(θ) which means that
the signal and idler are extraordinary beams, polarized in
the principal plane x, z while the pump is an ordinary
beam polarized in the direction y perpendicular to the
principal plane.

We emphasize that the case of negative crystals can
be treated straightforwardly by following our analysis and
setting the pump as an extraordinary beam while either
the signal or the idler is an ordinary beam. Thus the fol-
lowing analysis gives a general framework in which it is
possible to consider all types of phase matching for both
positive and negative crystals.

Since in almost all OPO systems the nonlinear inter-
action is local and instantaneous with dominant quadratic
χ(2) effects, we assume PNL = ε0χ

(2) |E : E|.

In this situation and with the help of equation (4) writ-
ten for an extraordinary (ordinary) beam, the nonlinear
interaction of the three waves propagating in the crystal
is governed by the system:

∂ξp

∂z
+
n0

c

∂ξp

∂t
=

i

2kp
4⊥ξp + i

ωp

n0c
deff ξsξi exp[−i(∆k)z]

∂ξs

∂z
+
ns

c

∂ξs

∂t
=

i

2ks
4⊥ξs − tan %s

∂ξs

∂x
+ i

ωs

nsc
deffξpξ

∗
i

× exp[i(∆k)z]

∂ξi

∂z
+
ni

c

∂ξi

∂t
=

i

2ki
4⊥ξi − tan %i

∂ξi

∂x
+ i

ωi

nic
deff ξpξ

∗
s

× exp[i(∆k)z], (5)

where ξp, ξs and ξi are the envelopes of the pump, the
signal and the idler respectively, and n0, ns, ni are the re-
fractive indices of the pump, signal and idler fields respec-
tively. We have set χ(2) = 2deff and ∆k = |kp − ks − ki|z
to account for a possible mismatch. The walk-off angle
%s(i) is related to the phase matching angle θs(i) by the

relation tan %s(i) = τs(i)/β
2
s(i) where 2τs(i) = (γ2 − 1)

× sin(2θs(i)) and β2
s(i) = γ2 cos2 θs(i) +sin2 θs(i), and4⊥ is

the Laplacian acting on the transverse coordinates x and
y. Note that tan%s(i) is a small parameter which is typi-
cally of the order of the crystal birefringence ∆n = ne−n0.
This justifies the fact that the walk-off is taken as a small
parameter in the following study. The above plane po-
larized beam assumption is consistent with the paraxial
approximation, and constitutes a good approximation so
long as the directions of the two wave components in the
beam do not deviate much from the direction of propa-
gation. We have also neglected in equations (5) the slight
asymmetry of diffraction in the transverse variables (due
to the crystal birefringence) with respect to the walk-off
effect.

The relevance of this model has already been tested
by several authors. Among those who included walk-off,
one should mention Smith et al. [8] and Nishikawa and
Uesugi [9] (diffraction has been neglected by the last au-
thors) who integrated numerically equations (5) and both
groups obtained results in a very good agreement with the
experiments. Analytical treatment is also possible and it
is interesting to explore the possibilities of this approach
compared to the extensive experimental and numerical in-
vestigation which has been carried out in the above men-
tioned references.

However, in order to keep the analysis as simple as
possible to get more insight into the role of the walk-off in
the transverse dynamics, we will extend the model to take
into account optical cavities with large aspect ratio but we
restrict ourselves to single longitudinal mode OPOs. As-
suming that the cavity is triply resonant, one may reduce
equations (5) by means of the mean-field limit approxi-
mation. Since the procedure is well known and detailed
calculations are similar to that of reference [16] we do not
repeat them here. After lengthy but straightforward cal-
culations, equations (5) are transformed into:

∂tAp = γp[−(1 + i∆p)Ap + iap4⊥Ap −AsAi +E(x, y)]

∂tAs = γs[−(1 + i∆s)As + ias4⊥As +ApA
∗
i − αs∂xAs]

∂tAi = γi[−(1 + i∆i)Ai + iai4⊥Ai +ApA
∗
s − αi∂xAi]

(6)

where Ap, As, and Ai, are the adimensional complex
envelopes of the pump, signal and idler fields respec-
tively and E(x, y) is the external normalized pump signal.
Note that these envelopes are expressed in terms of the
transformed variables for which the longitudinal bound-
ary conditions of the cavity are homogeneous, as is cus-
tomary in the mean-field limit (see Ref. [16]). ∆p, ∆s, and
∆i are three detuning parameters for pump, signal and
idler fields, respectively, defined by ∆p = (ω0 − ωp)/γp,
∆s = (ω1−ωs)/γs, ∆i = (ω2−ωi)/γi, where γp, γs and γi
are the cavity decay rates for the three fields, ω0, ω1, and
ω2 are the three cavity resonance frequencies closest to the
pump frequency ωp, the signal frequency ωs, and the idler
frequency ωi, respectively. The diffraction parameters ap,
as, ai are given by ap = c/(2n0kpγp), as = c/(2nsksγs),
ai = c/(2nikiγi) where kp, ks and ki are the longitudinal
wave numbers of the pump, signal, and idler fields respec-
tively. Finally in equations (6) the walk-off parameters are
defined as αs = c tan%s/(nsγs) and αi = c tan %i/(niγi)
for the signal and idler fields respectively.

In the absence of walk-off (αs = αi = 0) we recover
the set of governing equations of OPOs in optical cavities
where transverse pattern formation has been investigated
leading to either the appearance of rolls, filamentation and
turbulence [17], traveling waves and standing waves [18]
or the existence of optical defects [19]. The effect of walk-
off on transverse pattern formation which acts as gradient
term breaking the reflection symmetry has not been yet
investigated. It is the main concern in the following.
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3 Linear and nonlinear analysis in presence
of walk-off

3.1 Neutral stability curve

The equations

∂tAp = γp[−(1+i∆p)Ap +E(x, y)−AsAi+iap∆⊥Ap]

∂tAs = γs[−(1+i∆s)As+ApA
∗
i +ias∆⊥As−αs∂xAs]

∂tAi = γi[−(1+i∆i)Ai+ApA
∗
s+iai∆⊥Ai−αi∂xAi] (7)

describing the dynamics of the pump, signal, and
idler waves respectively, have a homogeneous and time-
independent solution:

Ap =
E

1 + i∆p
≡ µ As = 0 Ai = 0. (8)

It is convenient to write equations (7) in terms of the
deviations from the equilibrium B = Ap − µ, As, and Ai
which obey the following system:

∂tB = γp[−(1 + i∆p)B + iap∆⊥B ]− γpAsAi
∂tAs = γs[−(1 + i∆s)As + ias∆⊥As + µA∗i − αs∂xAs]

+ γsA
∗
iB

∂tA
∗
i = γi[−(1− i∆i)A

∗
i − iai∆⊥A

∗
i + µAs − αi∂xA

∗
i ]

+ γiAsB
∗. (9)

We then proceed to a stability analysis by linearizing equa-
tions (9) around the basic state (8) and considering solu-
tions of the form exp(ikxx+ ikyy+λt), where k = (kx, ky)
is the transverse wave vector and λ is an eigenvalue of the
linear problem.

As can be seen from equations (8, 9), the linear pump
perturbations are decoupled from that of the signal and
idler envelopes and thus the analysis reduces to the study
of the linearized form of the two last equations of (9). One
obtains after straightforward calculations the following
characteristic equation for the signal and idler envelopes:

λ2 − (bs + bi)λ+ bsbi − γsγiµ
2 = 0

where

bs = −γs[1 + i(∆s + ask
2 + αskx)]

bi = −γi[1− i(∆i + aik
2 − αikx)].

The characteristic equation yields the neutral stability
surface (Re(λ) = 0) in the 2D plane of the wave vector
components (kx, ky) in the form:

ω = Im(λ)

= γsγi[∆s −∆i + (as − ai)k
2 − (αs + αi)kx]/(γs + γi)

(10)

µ =
(
1 + (∆+ ak2 + αkx)2/(γs + γi)

2
) 1

2 (11)

where

∆ = γs∆s + γi∆i

a = γsas + γiai

α = γsαs − γiαi. (12)

We start by recalling the problem without walk-off (αs =
αi = 0) which has been recently studied by Longhi [4].
It immediately follows from equation (11) that minimiz-
ing µ with respect to k gives the instability threshold µc
with critical wave number kc and frequency ωc. The value
of these quantities depends on the sign of the “effective”
detuning ∆. With ∆ < 0 the most unstable modes fall
on a circle of magnitude kc =

√
−∆/a with a thresh-

old given by µc = 1 and ωc = ω(kc) from equation (10).

For ∆ > 0, criticality is obtained at µc =
√

1 + ∆̃2

with ∆̃ = (γs∆s + γi∆i)/(γs + γi) and corresponds to
an homogeneous state (kc = 0) and associated frequency
ωc = γsγi(∆s−∆i)/(γs+γi). When the walk-off is present,
the reflection symmetry x → −x in system (9) is broken.
As pointed out above, this broken symmetry could intro-
duce new bifurcation points and lead to new patterns. To
understand this effect, we will mainly be focused on the
case ∆ > 0, postponing the concerns of ∆ < 0 to later
analyses. In this case, the gain parameter µ represents
a surface which depends on the wave vector components
(kx, ky) and cannot be reduced to a curve depending upon
the modulus square k2 as for standard (αs = αi = 0)
OPOs when the rotational symmetry is preserved. By min-
imizing µ in equation (11) with respect to the wave vector
k = (kx, ky) for positive nonvanishing “effective” detuning
∆, the instability threshold is reached, to leading order in
α, for:

µ =
√

1 + ∆̃2 − α2∆/
[
4a(γs + γi)

2
√

1 + ∆̃2
]
.

Perturbations that will first become unstable (i.e. whose
wavevector minimizes threshold) are 1D structures ex-
panding in the walk-off direction with kcx = −α/(2a) and
kcy = 0. The relevant neutral stability curve (µ versus kx)
which corresponds to the projection of the neutral stabil-
ity surface on the plane (µ, kx) is reproduced in Figure 2.
The neutral stability curve without walk-off is also shown
for comparison. It clearly shows that the walk-off is re-
sponsible of the threshold lowering which is accompanied
with a shift of the neutral stability curve towards nega-
tive or positive kx depending on the sign of the “relative”
walk-off α.

In addition to the above general situation, it is wor-
thy to mention the particular case of the degenerate OPO
systems where γs = γi, as = ai, ∆s = ∆i and αs = αi. As
a consequence, the relative walk-off parameter α vanishes.
The physical interpretation of this result is that the com-
bined symmetric individual walk-off of the signal from one
hand and the idler from the other hand results in a sup-
pression of the relative walk-off effect. Thus, at threshold
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L =

−γp(1 + i∆p) + iγpap∆⊥ 0 0

0 −γs(1 + i∆s) + iγsas∆⊥ − γsαs∂x µγs

0 µγi −γi(1− i∆i)− iγiai∆⊥ − γiαi∂x
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Fig. 2. Projection of the neutral stability surface µ = µ(kx, ky)
on the plane (µ, kx) (dashed line) for α = 0.34. Neutral sta-
bility curve in the absence of walk-off (dotted line) is also
shown for reference. Note the lowering of the instability thresh-
old from µc to µconv indicated by the arrows on the figure
and the appearance of a unidimensional convective structure
kx = α/(γsas + γiai) and ky = 0.

of instability, the situation is similar to that of absence of
walk-off. In other words, the value of the gain parameter
µ at the onset of instability and the most unstable mode
remains unchanged (µ = µc and k = kc = 0). However, in
spite of this significant difference between degenerate and
non degenerate OPO systems, the walk-off influence is not
reduced to the neutral stability curve. In addition, it can
introduce a new phenomenon of power transport and af-
fects both linear and nonlinear spatio-temporal dynamics.
In order to understand the mechanisms of transverse pat-
tern formation in this situation, a global-stability analysis
in terms of convective and absolute instability [20] is re-
quired. In the remaining of the paper and for the clarity
of the analysis we denote the value of the gain parameter,
at the onset of instability, in the absence of walk-off by

µ = µc ≡
√

1 + ∆̃2 . When the walk-off is present, the
new pump threshold at the onset of instability is termed

µ = µconv ≡ µc − α2∆/
[
4a(γs + γi)

2
√

1 + ∆̃2
]
.

3.2 Derivation of the modulation equation

In this subsection we base the nonlinear analysis on the
outcome of the unperturbed (αs = αi = 0) linear stability
analysis instead of fully analyzing the classical linearized
stability problem by expanding the solutions as an asymp-
totic series in the small parameters αs and αi. Therefore,

in the nonlinear stability theory we consider the nonlinear
evolution of solutions of equations (9) for µ close to µc.
We introduce another small parameter ε and the rescaled
control parameter µ2 given by

µ− µc = ε2µ2. (13)

For µ2 > 0, we expect the amplitudes of As, Ai, and B to
undergo first linear growth in the vicinity of the solution
(8), and then to be saturated by nonlinear terms. The
spatial scale at which these amplitudes develop is given
by the inverse of the width of the band of unstable modes
i.e. above threshold µc. As in case of lasers [5] for Ω < 0,
we have to choose the following multiple-scale expansions
for t, x, and y:

x = X0 + εX

y = Y0 + εY

t = T0 + εT1 + ε2T2 + ...

(14)

Temporal and spatial derivatives in (9) are then replaced
by


∂t = ∂T0 + ε ∂T1 + ε2 ∂T2

∂x = ∂X0 + ε ∂X

∂y = ∂Y0 + ε ∂Y .

(15)

We now complete the specification of our model. The two
parameters αs and αi are small. Therefore, the dynam-
ics will depend on the relative magnitude of the small
parameters involved in the problem, namely, ε, αs, and
αi. Balance of the linear growth rates and walk-off in the
asymptotic expansion imposes scaling relations between
the small parameters ε, αs, and αi. This implies that
αs = O(ε) and αi = O(ε). Therefore we may set{

αs = ε α̂s

αi = ε α̂i
(16)

where α̂s = O(1) and α̂i = O(1).
In the sequel the following compact notation for equations
(9) is used

∂tV = LV +N (17)

where the vector V = (B,As, A
∗
i )
T contains the field vari-

ables, L is the linear operator of the system:

(See equation above)



H. Ward et al.: Optical parametric oscillators with walk-off 281

L2 =

 iγpap(∂
2
X + ∂2

Y ) 0 0

0 iγsas(∂
2
X + ∂2

Y )− α̂sγs∂X γsµ2

0 γiµ2 −iγiai(∂
2
X + ∂2

Y )− α̂iγi∂X)



and N is the nonlinear operator:

N =

−γp As Aiγs A
∗
i B

γi As B
∗

 .

We emphasize here that N is the exact nonlinear term and
does not result from a power expansion since the nonlin-
earity of the OPO is quadratic contrary to what is known
in e.g. lasers.

The evolution equations for the field variables are clas-
sically obtained by expanding the solution V in power
series of ε:

V = εV (1) + ε2V (2) + ε3V (3) + ... (18)

The functions V (i) depend on the slow variables X,Y, T1,
and T2. By substituting the expansion (18) and the rela-
tions (15) and (16) in (17), and then collecting coefficients
of like powers of ε, the following equations are obtained

(∂T0 − L0)V (1) = 0 O(ε)

(∂T0 − L0)V (2) = −∂T1V
(1) +N2 = G2 O(ε2)

(∂T0 − L0)V (3) =

−∂T1V
(2) + (−∂T2 + L2)V (1) +N3 = G3 O(ε3)

(19)

where L0 is the linear operator of the system for µ = µc =√
1 + ∆̃2, L2 is defined by

(See equation above)

N2 and N3 are the nonlinear terms at O(ε2) and O(ε3).
At O(ε) we find that:

V (1) =


0

1
( 1 + i∆̃ )√

1+
s

∆
2

A(X,Y, T1, T2) eiωcT0

where ωc = γsγi(∆i −∆s)/(γs + γi).
The equations obtained from the coefficients of higher

powers of ε are of the form: (∂T0 −L0)V (i) = Gi for some
right-hand sideGi, and the homogeneous equation at O(ε)
in (19) has a non trivial solution. Therefore, V (i) exists for
i > 1 only if the termsGi satisfy an appropriate solvability
condition. It states that Gi must be orthogonal to the
eigenvector U = (0, γiµc, γs(1 − i∆̃))T exp iωcT0 of the
adjoint operator of (∂T0 − L0).

Applying the solvability condition at O(ε2) leads to:

∂A

∂T1
= 0. (20)

The equation at O(ε2) in (19) has a solution

V (2) =

B2

0

0


with

B2(X,Y, T2) =

−(1− ∆̃)(1− i∆p)/
√

(1 +∆2
p)(1 + ∆̃2)|A(X,Y, T2)|2.

(21)

Similarly, applying the solvability condition at O(ε3)
yields the form of an evolution equation:

τ∂T2A = (cr + ici)(∂
2
X + ∂2

Y )A+ (v̂g + iŵg)∂XA

+(d1 + id2)µ2A− (N1 + iN2)|A|2A (22)

where

τ =
1

γsγi
[(γs + γi)

2 + (γs − γi)
2∆̃2]

cr = 2a ∆̃ > 0

ci = (as − ai)(γs + γi)− (as + ai)(γs − γi)∆̃
2

α̂ = γs α̂s − γi α̂i

v̂g = (γs − γi)( α̂s − α̂i)∆̃
2 − (γs + γi)( α̂s + α̂i)

ŵg = 2∆̃ α̂

d1 = 2(1 + ∆̃2)
1
2 (γs + γi)

d2 = 2(1 + ∆̃2)
1
2 (γi − γs)∆̃

N1 = 2
1− ∆̃∆p

1 +∆2
p

(γs + γi)

N2 = 2
1− ∆̃∆p

1 +∆2
p

∆̃(γi − γs).

In order to get a partial differential equation for A in terms
of the original space and time variables, we use the total
time and space derivatives of the signal amplitude given
by ∂tA = ε2∂T2A, ∂xA = ε∂XA, ∂yA = ε∂YA, and the
relations, µ = µc + ε2µ2, αs = ε α̂s and αi = εi α̂i. Note
that (i) the fast variables T0, X0, and Y0 do not appear
in the total derivatives of the slowly varying amplitude A
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because of the factorization of these variables, and (ii) the
time scale T1 disappears because of the solvability condi-
tion (20). Then we obtain after setting εA = A1:

τ∂tA1 = (cr + ici)(∂
2
x + ∂2

y)A1 + (vg + iwg)∂xA1

+(d1 + id2)(µ− µc)A1 − (N1 + iN2)|A1|
2A1

(23)

where

vg = (γs − γi)(αi − αs)∆̃
2 − (γs + γi)(αs + αi)

wg = 2∆̃α.

Before proceeding further in the analysis, it is instructive
to get a physical interpretation of the different terms and
their coefficients in equation (23). The parameter τ is the
effective relaxation time for the mixing waves (signal and
idler) and it reaches its minimum value when γs = γi.
The parameters d1 and d2 are the weights, close to the in-
stability threshold, of the growth rate and the frequency
respectively. Let us remark that d1 never vanishes and the
threshold for instability is actually set by µ. On the con-
trary d2 which acts only on the frequency vanishes when
γs = γi.

The three remaining terms are of a great importance
for our analysis. The diffraction coefficient ci may also van-
ish for several situations and the obvious one is as = ai
and γs = γi while the diffusion coefficient cr sets the limit
of the validity of our reduced model for OPO systems. This
coefficient is positive as it should be in order to avoid the
spurious anti-diffusive instability, this is consistent with
∆̃ > 0 as considered in this paper. This condition can be
fulfilled for OPOs in various situations except for ∆s and
∆i simultaneously negative. In fact, generally the presence
of the diffusive term (cr > 0) in optical systems where the
original governing equations contain only diffraction terms
stems from a non trivial interaction between diffraction,
relaxation and dispersion as can be seen from the above
definition of cr. The origin of a similar diffusion term in an
amplitude equation describing pattern formation in opti-
cal bistability was discussed in details by Le Berre et al.
[21]. The nonlinear amplitude saturation coefficient N1

depends on the sign of the quantity 1 − ∆̃∆P , which we
take positive in order to deal with a supercritical Hopf
bifurcation. If 1 − ∆̃∆P < 0 a subcritical Hopf bifurca-
tion occurs with appearance of bistability [22]; saturation
effects are then captured by quintic terms. This case re-
quires a specific analysis and will be published later. On
the opposite, the nonlinear phase modulation coefficient
N2 has no incidence on saturation effects and even van-
ishes for γs = γi. As expected the walk-off creates a first
space derivative ∂xA1 with coefficients vg and wg. The

presence of the term iwg
∂A1

∂x
in equation (23) leads to an

unusual form of the complex Ginzburg-Landau equation
which deserves further processing to obtain a normal form
amplitude equation. It has no equivalence in the other op-
tical nonlinear systems as lasers, optical bistability, lasers
with saturable absorber and Raman lasers for which clas-
sical Ginzburg-Landau or Swift-Hohenberg equations have

been derived since the reflection symmetry (x → −x) is
preserved for all these systems. This gradient term is spe-
cific to OPO systems and characterizes the walk-off effect.
Its physical importance will be understood in the light of
the analysis of the linear version of equation (23).

Up to now, we have derived an evolution equation in
presence of walk-off on the basis of the outcome of the
stability analysis of the small deviations from the steady
state solution (8) of the OPO equations. We are now going
to proceed to a spatio-temporal stability analysis of the
OPO off state solution (8) and the subsequent pattern
formation.

4 Spatio-temporal instabilities

4.1 Brief survey of theory

We start this section by briefly recalling some ideas on
convective and absolute instabilities. For the sake of
simplicity, we state the results here for only one trans-
verse spatial dimension (the wave vector k = (kx, ky)
reduces to a wave number k), and the reader should
consult reference [13] for details and reference [14] for
generalizations to the bidimensional case.

To examine the stability of a basic state, we classically

consider a wave packet A1(x, t) =
∫ +∞
−∞ a(k)ei(kx−ω(k)t) dk

where ω = ω(k) is the dispersion relation of the system.
Using the method of steepest descent [23], it can be shown
that the asymptotic form reached by the wave packet as

t→∞ with
x

t
bounded is:

A1(x, t) ∼
e
i

[x
t
k−ω(k)

]
t[

t
d2ω

dk2

] 1
2

where k is determined by
dω

dk
=
x

t
·

In case of temporal instability analysis, the system
is unstable provided that Im(ω) > 0 for any real wave
number, and the “most unstable” wave number kc is

defined by
d[Im(ω)]

dk
|k=kc = 0. The ray direction along

which the maximum growth rate is reached is defined by
d[Re(ω)]

dk
|k=kc =

x

t
·

The second parameter domain of special interest con-
cerning spatio-temporal instabilities, is that correspond-
ing to a maximum growth rate for a given x as t → ∞

that is
x

t
→ 0. The wave number associated with this

instability satisfies the equation
dω

dk
|k=k0 = 0, where k0

must generally be complex.
Thus, a perturbation at fixed x grows with a rate

Im[ω(k0)]. When Im[ω(k0)] is positive, the system is said
to be absolutely unstable (the absolute critical values are



H. Ward et al.: Optical parametric oscillators with walk-off 283

denoted µabs, k0, ωabs). If Im[ω(k0)] is negative or equal
to zero, Im[ω(kc)] being positive, the system is said to
be convectively unstable (the values at threshold for con-
vective instability are µconv, kconv, ωconv. Note that, in
the absence of walk-off, µabs = µconv = µc where µc is
defined at the end of Section 3.1 and corresponds to the
usual instability threshold [4]). In the latter case, any lo-
calized perturbation is convected away so that instabil-
ities cannot globally grow. In the former case (absolute
instabilities) localized perturbations grow in situ and also
expand in space. In the sequel, we show the interest of
these ideas to describe spatio-temporal evolution of some
unstable modes.

4.2 Walk-off introduces convective and absolute
instabilities

As we are dealing with a 2D problem we seek solutions
of the linearized version of equation (23) in the form

A1 = Ãeiωt+i (kxx+kyy). The broken reflection symme-
try x → −x, does not allow the emergence of coupled
oblique traveling waves propagating in opposite directions.
The dispersion equation is deduced from linearizing equa-
tion (23) and it reads

ω =
1

τ
[−k2(ci − icr) + kx(vg + iwg) + (d2 − id1)(µ− µc)]

(24)

where k2 = k2
x + k2

y.
For (αs = αi = 0) we recover the standard solution of

the OPO in the absence of walk-off, namely, a spatially
homogeneous solution (kcx = kcy = 0) is found for µ = µc.
When α 6= 0, i.e. in the presence of walk-off, this bidi-
mensional problem can be reduced to an equivalent one-
dimensional problem, by means of Squire’s transformation
[24] as explained in the following. Squire’s theorem states
that if a Squire transformation can be found then the most
unstable modes are unidimensional i.e. those which ap-
pear in the equivalent 1D problem. For this purpose we
set:

vg ≡ cos(ϕ)vg , w̄g ≡ cos(ϕ)wgwith: cos(ϕ) ≡
kx

k
µ̄ = µ, ω̄ = ω. (25)

Note that the transformation is not valid for kx = ky = 0.
The dispersion relation (24) is hereby reduced to the

form:

ω̄ =
1

τ
[−k2(ci − icr) + k(vg +iw̄g) + (d2 − id1)(µ̄− µc)].

(26)

We solve the equivalent one-dimensional problem defined
by (26). From the solution of this problem we can then de-
rive the solution of the two-dimensional problem (24), by
means of the transformation (25). Therefore the convec-
tive instability threshold is simply obtained by minimizing

µ̄ with respect to the modulus k of the real wave vector k
= (kx, ky) [24].

Hence, in the 1D problem (26) the critical value of k

is determined by
dµ̄

dk
= 0 which leads to µconv, kconv and

ωconv:

µ̄conv = µc−
w̄2
g

4crd1
=µc−α

2 ∆

4a(γs+γi)2
√

1+∆̃2
cos2(ϕ)

kconv = −
w̄g

2cr
= −

α

2a
cos(ϕ)

and

ω̄conv = −
1

τ
(
∆̃2α2

c2r
ci +

∆̃α

c2r
vg +

∆̃2α2

c2rd1
d2) cos2(ϕ).

Taking into account transformation (25), the most unsta-
ble mode (i.e. that leads to the lowest value of µ̄) is ob-
tained for ϕ = 0 giving rise to a solution in form of travel-
ing waves propagating in the x direction at the onset of in-

stability given by µconv=µc−α2∆/
[
4a(γs+γi)

2
√

1+∆̃2
]

with a real wave vector kx = kconv = −α/(2a) and ky = 0.
Walk-off introduces a structure with a wave vector de-

pending on the ratio of diffraction and walk-off parame-
ters weighted by relaxation coefficients. Contrary to the
threshold pump value which depends also on the effective
detuning ∆, the wave vector at threshold is independent
of ∆.

Squire’s theorem also allows to obtain information on
unstable oblique traveling waves which appear when µ ex-
ceeds the critical value µconv but is smaller than µc. In
this sector unstable bidimensional structures may exist
since ϕ 6= 0. As a result, the threshold for signal (and
idler) emission can be lowered not only for transverse
beams expanding in the walk-off direction but also for
bidimensional beams (kx and ky 6= 0) according to the
new instability region with respect to the standard (with-
out walk-off) OPO which emerges between the curves

µ = µc − α2∆/
[
4a(γs + γi)

2
√

1 + ∆̃2
]

and µ = µc. To

summarize the presence of walk-off destabilizes the system
and mostly forces the transverse beam to expand along the
walk-off direction.

Once the specific role of the walk-off OPO “char-

acteristic” term iwg
∂A1

∂x
in the convective instabil-

ity is clarified, it is interesting to describe the evo-
lution of the instability in a frame moving with
the group velocity of the most unstable mode. If
we set A1 = Ã(x, y, t)eikconvx+iωconvt, then the

amplitude Ã satisfies a complex Ginzburg-Landau
equation in the form:

τ
∂Ã

∂t
= (cr + ici)(

∂2

∂x2
+

∂2

∂y2
)Ã+ (

ci

cr
wg + vg)

∂Ã

∂x

+ (d1 + id2)(µ − µconv)Ã− (N1 + iN2)Ã|Ã|2.

(27)
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Fig. 3. Stability diagram of the OPO in presence of walk-off.
The different types of instabilities are indicated on the figure.
A.U, C.U., and S. stand for absolutely unstable, convectively
unstable and linearly stable respectively.

Notice that, in the absence of walk-off, wg and vg van-
ish and the gradient term disappears in equation (27)
leading to µconv = µc. Thus we recover the standard
complex Ginzburg-Landau equation as it arises in many
nonlinear studies of optical and fluid dynamical systems.
In that case thresholds of linear, convective, and absolute
instabilities coincide at the marginal instability giving rise
directly to an absolute unstable regime. In the presence
of walk-off, this order-parameter equation describes the
growth of a travelling wave moving with the group ve-
locity [25] Vg = ( ci

cr
wg + vg)/τ which is proportional to

aiαs + asαi. This parameter plays a central role in the
nature of the emerging transverse patterns at threshold.
Indeed, the walk-off does not allow for travelling waves
moving in opposite directions as it may happen either in
OPOs without walk-off [4] or in lasers [5]. This canon-
ical form of Ginzburg-Landau equation with a gradient
term has been extensively studied by Huerre and Monke-
witz as a model of hydrodynamic resonances in separated
shear flows [13]. They showed that this term is responsible
for the gap between absolute and convective instabilities.
For OPO systems, two striking features are already worthy
to notice in the light of the above nonstandard Ginzburg-
Landau equation. First, when Vg = 0, the first instability
is absolute which means that no convective structures may
occur in the OPO system. Second, for nonvanishing values
of Vg either (i) wg 6= 0 and the system undergoes a con-
vective instability with an off-axis signal generation where
kx = kconv = −wg/(2cr), or (ii) wg = 0 then the first
instability still is convective but the generated signal is
spatially homogeneous since kconv = 0. The situation ap-
pears similar to that of standard OPOs (without walk-off)
but the underlying difference in the nature of instabilities
is of a great importance. The first instability is absolute
for standard OPOs, however it is convective in presence
of walk-off.

Figure 3 summarizes the different dynamical behaviors
of the OPO in presence of walk-off. The OPO off state

(A1 = 0) is stable for µ−µconv < 0, convectively unstable
for µ−µconv > 0, and below the curve; and absolutely un-
stable for values of µ−µconv above the curve. Note that for
aiαs+asαi = 0 the thresholds for absolute and convective
instabilities are degenerate and the system loses its stabil-
ity by an absolute instability. For aiαs + asαi 6= 0, there
is a region of convective unstable regimes which expands
as the parameter increases.

Let us now discuss the dynamics in the absolute and
convective regimes. For µ > µconv, the OPO off state is
convectively unstable if:

µconv < µ < µabs =

µconv + (aiαs + asαi)
2 ∆̃

2[(γs + γi)
2 + (γi − γs)2∆̃2]2

d1cr(c2r + c2i )
,

where µabs is the threshold for the absolute instability.
In this range, the response of the system to a localized

perturbation grows continuously but it is simultaneously
convected away, so that an observer at any fixed location
sees the medium returning to the OPO off state. Therefore
a continuous source of perturbations (noise) is required to
sustain a permanent emitting state.

Whereas when µ > µabs, the OPO off state is abso-
lutely unstable. The complex wave number k0 at onset of
absolute instability, is given by:

k0 =

vgci−wgcr−2i(aiαs+asαi)∆̃
[
(γs+γi)

2+(γi−γs)2∆̃2
]

2(c2i +c2r)
·

(28)

The excess gain with respect to threshold µ − µabs rules
the temporal evolution of the amplitude at any location.
However, as can be seen from (28), spatial dynamics inter-
feres with this amplification. Downstream (x > 0) spatial
dynamics accelerates (for aiαs + asαi > 0) the amplifica-
tion, while upstream (x < 0) it attenuates this amplifi-
cation but it is not strong enough to compensate for the
temporal amplification. It results that, in the long time
limit, the entire medium is contaminated by the response
to any localized perturbation. In other words, the pattern
expands transversely in both positive and negative x di-
rections but the amplification is much faster downstream
than upstream as it is checked numerically in the next
section. Of course this spatio-temporal amplification is
eventually saturated by nonlinearities. In these conditions
the transverse pattern is generated from the self-dynamics
of the system.

To summarize, in presence of walk-off, the OPO emerg-
ing transverse pattern at threshold may be either a noise-
sustained or a self-sustained dynamical pattern depending
on the value of the pump parameter with respect to the
two instability thresholds µconv and µabs.
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5 Numerical results

In this section we describe results of numerical simulations
of the OPO complex nonstandard Ginzburg-Landau equa-
tion (Eq. (23)) above threshold, since it allows to check
the onset of convective and absolute instabilities. In fact,
the difficulty to handle mathematically the original the-
oretical model (Eq. (7)) leading to the lack of analyti-
cal results makes relevant the use of amplitude equations.
Furthermore, it has often been checked that their validity
qualitatively extends far beyond the instability threshold.
For almost all OPO experimental situations, the trans-
verse walk-off expansion is one dimensional which is also
consistent with our bidimensional analytical study. There-
fore, for the sake of simplicity and in accordance with our
theoretical study, we have integrated equation (23) in 1D
transverse coordinate (the walk-off direction coordinate x)
by means of the split-step method. For each run we have
set the length of the transverse interval of integration wide
enough with respect to the width of localized structures
to avoid numerical instabilities.

The most important result of our analysis is its abil-
ity to predict the spatio-temporal evolution of arbitrary
initial perturbations corresponding to OPO practical sit-
uations. It comes out from the linear stability analysis
that in the transient regime (linear system) OPOs can re-
spond to a perturbation that is localized both in time and
space in two qualitatively different ways; as discussed in
the preceding section either a convective or an absolute
instability develops. We only present here significant nu-
merical simulations which have been performed with the
pump gain parameter µ as a control parameter to check
the different regimes and we have kept the signal and the
idler walk-off to αs = 0.4 and αi = 0.06, respectively.

For all figures we have set the remaining parameters to
γp = γs = γi = 1, as = 0.2, ai = 0.06, ∆p = −2, ∆s = 2,
and ∆i = 2, and the signal envelope has been initialized
by a narrow Gaussian function at the origin (which also
can approximate a Dirac distribution δ(x)). The values
of the parameters are the same as in reference [4] except
for walk-off and diffraction parameters. We have chosen
a large value for αs with respect to αi so that the signal
field experiences a much larger walk-off effect than the
idler field. This makes easier the qualitative comparison
with the experimental situation considered in reference [8].
Notice that we have checked the analytical predictions for
different values of αs and αi and we have observed that
the walk-off effect decreases by decreasing the difference
between αs and αi, in accordance with the definition of α
in equations (12).

We first performed a series of numerical simulations in
the transient (linear behavior) and asymptotic (nonlinear
behavior) regimes, with OPO parameters close to but just
above the convective instability threshold µ & µconv. The
spatio-temporal evolution of the signal envelope function
|A1(x, t)| is illustrated in Figures 4 and 5 for µ just above
the convective instability threshold (see Fig. 3). Two strik-
ing features are readily apparent in these plots. For small
and intermediate values of time (Fig. 4a) a transient un-
stable wavepacket develops, travelling in the decreasing
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Fig. 4. Transient behavior in convective unstable regime.
(a) Emergence of a convective transverse signal envelope just
above the threshold of convective instability shown in Figure 3.
The parameters are indicated in the text. Note both the grow-
ing and the propagation of the envelope. The signal envelope
was initialized with a narrow transverse gaussian profile (the
lower curve). (b) Convective spatio-temporal linear evolution
of the signal envelope. The transverse profile expansion in the
decreasing x direction is clear from the figure.

x direction as dictated by the convective linear instabil-
ity characteristics. A three-dimensional plot representing
the spatio-temporal evolution of the signal envelope is de-
picted in Figure 4b. The second striking feature is related
to the role of the nonlinearity for long-time behavior. Sat-
uration eventually dominates linear amplification as can
be seen from Figure 5a. In this situation nonlinearity man-
ifests itself only in saturation. The signal intensity grows,
saturates, and propagates in the transverse direction but
asymptotically returns to zero at a given x coordinate as
shown in Figure 5b. The underlying convective character
dominates the dynamics. In other words, the main conse-
quence of the convective unstable regime is that the sys-
tem acts as a spatial amplifier of localized fluctuations. At
a fixed location, a local perturbation first grows with time
and then decays as it is advected away. In a frame mov-
ing with the transverse group velocity, the perturbation is
amplified and broadens. This phenomenon is also depicted
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Fig. 5. Nonlinear saturation effects on the convective trans-
verse envelope of the emerging signal of Figure 4. (a) Evolution
at different times (t = 0, 13, 25). Notice that the envelope, at
the origin, continuously decreases. (b) Spatio-temporal evolu-
tion of the signal envelope. Note that the effect of nonlinear
terms is just to saturate the linear amplification. The convec-
tive character is always dominant. (c) Asymptotic behavior for
4 transverse locations of the envelope signal. The curves la-
belled (1), (2), (3) and (4) correspond to x ' 0, x ' −2.5,
x ' −3, and x ' −9, respectively. The transverse domain acts
as a spatial amplifier for incoming disturbances, but asymptot-
ically all transverse locations vanish and the envelope returns
to the ground state (A1 = 0).
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Fig. 6. Linear absolute temporal evolution of the transverse
envelope of the signal, when the pump parameter is just above
the limiting curve of convective instability (see Fig. 3). The
remaining parameters are unchanged. Note the amplification
in situ at the origin.

in Figure 5c where the temporal evolution of four trans-
verse x locations are shown. At first (t = 0) the gaussian
peak (maximum) is located at the origin and propagates
in the decreasing x direction and the origin returns to
the OPO off state after a transient as can be seen from
the curve labelled (1) on Figure 5c. The three remaining
curves represent the temporal evolution at the locations
x ' −2.5 (curve (2)), x ' −3.45 (curve (3)), and x ' −9
(curve (4)). The perturbations grow as they are advected
away and the system acts as a spatial amplifier of incom-
ing perturbations. Ultimately, however, disturbances at a
given location decay and A1 = 0 (OPO off) is globally sta-
ble, even though the pump gain parameter µ exceeds the
threshold value of classical linear instability. This spatio-
temporal dynamics remains unchanged until the gain pa-
rameter µ crosses the critical curve delimiting the upper
limit of the convective unstable zone, as discussed below.

When the pump gain parameter µ is further increased
i.e. when µ > µabs the system enters the absolute unstable
zone. In order to illustrate the spatio-temporal evolution
of the signal envelope in this region, which is quite differ-
ent from the convective one, we have performed a second
series of numerical simulations for a typical value of µ
just above the absolute instability threshold. The main
difference is that the leading and the trailing edges of the
growing response to the localized initial condition, travel
in opposite directions as shown in Figure 6 (compare to
Fig. 4a). This behavior which is initiated in the transient
regime is even reinforced by the saturation effects which
are readily seen in Figure 7a for long-time evolution. The
temporal evolution of the transverse distribution of the
signal envelope is shown in Figure 7b where the saturated
wave packet tends to invade the whole transverse domain.
Contrarily to convective instability, at any transverse loca-
tion perturbations are amplified and then saturate leading
to a globally stable OPO on state. Figure 7c shows clearly
the attracting state for the same transverse locations as
in Figure 5c. Note the difference in the asymptotic states
(OPO off and OPO on) of the system.
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Fig. 7. Nonlinear absolute saturation of the envelope of Fig-
ure 6. (a) Temporal evolution for three selected times (t = 0,
13, 25) of the signal envelope built from a localized narrow
gaussian initial beam. Note the amplitude amplification at the
origin. (b) Spatio-temporal evolution of the transverse signal
envelope. The transverse beam profile tends asymptotically to
invade the whole spatial domain. (c) Asymptotic behavior of
the envelope signal for 4 transverse locations . The curves la-
belled (1), (2), (3) and (4) correspond to x ' 0, x ' −2.5,
x ' −3, and x ' −9 respectively. Contrarily to convective
unstable regime (Fig. 5c), the transverse signal envelope bifur-
cates from the ground state (A1 = 0) to a new state.

To end this section we would like to summarize the
consequence of our analysis on the pattern formation
in experimental OPO situations, in presence of walk-off.
First, in case of positive effective detuning (∆), and in
the absence of walk-off, the generated signal, and idler, at
threshold, are homogeneous and no pattern formation is
expected. However, in the presence of walk-off, the main
issue of our numerical and analytical analysis is that con-
vective and absolute patterns may be observed in OPO
experiments as they were observed in fluid mechanics [26].
Indeed the system becomes first convectively unstable and
all fluctuations are carried out transversely even though
the OPO off state is unstable. At the same time the
system becomes very sensitive to permanent perturba-
tions: if a noise source is applied, fluctuations are amplified
(until nonlinear saturation occurs) and a pulse (localized
structure) propagates in the decreasing or increasing x
direction, depending on the sign of the “effective” walk-
off. As a consequence a noise-sustained transverse signal
is generated. These states disappear as soon as the noise
is cancelled. This situation has been predicted and numer-
ically checked, very recently by Santagiustina et al. [27] in
a passive optical cavity filled by Kerr type nonlinear me-
dia when there is a tilt (the angle of incidence is not zero
which is an equivalent to the walk-off angle) of the input
pump beam. Above a second threshold, at larger values
of the pump parameter, the system is absolutely unsta-
ble and noise does not play anymore an important role.
Just above the onset of absolute instability an homoge-
neous solution builds up and, one may expect to observe
self-sustained dynamical structures at even larger pump
values.

6 Concluding remarks

In this paper we have carried out an analytical investi-
gation of spatio-temporal dynamics of optical parametric
oscillators in presence of diffraction and walk-off effects.
Using Squire’s theorem we found that the presence of
walk-off destabilizes the OPO system and induces the for-
mation of a transverse signal (idler) as a travelling wave
expanding in the walk-off direction. This predicted be-
havior is qualitatively similar to that observed in recent
experiments on OPOs [7,8] and in fluid convection [10].

We have also shown that beyond the threshold for
signal and idler generation the spatio-temporal evolu-
tion of transverse patterns is described by a nonstandard
(Eq. (23)) Ginzburg-Landau equation. Indeed, the walk-
off introduces a new term responsible for the lowering of
the threshold at the onset of instability on one hand, and
for a gap between thresholds of convective and absolute
instabilities on the other hand. Although we have car-
ried out our study for a positive crystal, where the sig-
nal and idler are experiencing walk-off, and the pump is
an ordinary beam, our analysis can easily be extended
to all types of phase matching configurations. A spatio-
temporal stability analysis permitted us to distinguish
between the walk-off-induced convective and absolute
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structures which may lead, in experimental OPO sys-
tems, to noise-sustained and/or self-sustained dynamical
patterns. Two directions are of a major importance in
extending the spatio-temporal dynamics of OPOs (in pres-
ence of walk-off). (i) We have limited the present work
to the supercritical bifurcation case. If the bifurcation is
subcritical, multistable states may occur in the system
and nonlinear localized structures may have an impor-
tant role in the transverse dynamics; for instance walk-off
could induce 1D transverse structures of soliton type. (ii)
For realistic OPO systems, the pump beam is spatially
inhomogeneous. We have recently considered this situa-
tion in the laser problem [20,28], by means of absolute
and convective instabilities. This spatio-temporal stabil-
ity analysis appears as a powerful analytical method to
deal with the presence of spatial inhomogeneities. Work
in these directions is in progress.
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